Question Number	Answer		Mark
*1(a)	(QWC- Work must be clear and organised in a logical manner using technical wording where appropriate.)Max 4• Mention of photons OR photoelectric (NOT photoelectrons)• Idea of one to one relationship from photon to electron• Intensity of light relates to number of photons/sec• wavelength/frequency is constant• photon energy depends on frequency /reference to $E=hf$ • Reference to $hf = \Phi + \frac{1}{2}mv_{max}^2$ and Φ constant	(1) (1) (1) (1) (1) (1)	4
1(b)(i)	Use of $E=hf$ $E = 3.90 \times 10^{-19}$ (J) Or calculate the minimum frequency for all elements Caesium and potassium [independent mark]	(1) (1) (1)	3
1(b)(ii)	Max 3 Refers to equation <i>E</i> or $1/2mv^2 = hf - \Phi$ [Do not accept hf = $\Phi + 1/2mv^2$, equation must be correctly rearranged]	(1)	
	Gradient(All parallel) because gradient = hIntercept(-) Φ is intercept on the energy axis /y axis $\mathbf{OR} f_0$ / threshold frequency/ minimum frequency required to release anelectron for the metal is the intercept on the frequency axis $\mathbf{OR} \ \Phi$ /h is the intercept on the frequency axispotassium will have the smallest Φ	(1)	
	OR zinc has the greatest Φ	(1)	3
1(b) (iii)	Zinc requires higher frequency /Zinc requires UV/UV dangerous (for students)/UV ionising/Can't get UV filters (Do not allow converse argument about Caesium for this mark)	(1)	
	Caesium works with visible light	(1)	2
	Total for question		12

Question Number	Answer	Mark
2 (a)	Photon energy is too small / less than work function	(1)
	(do not credit the frequency is less than the threshold frequency or	
	electrons have not been given enough energy)	
2 (b)	Method 1: Use of intercept x-axis	
	Use of $E = hf$ with $f = 10 \times 10^{14}$ Hz	(1)
	Divide by 1.6×10^{-19} to convert to eV (this mark can be scored even if	
	wrong frequency used)	(1)
	$\Phi = 4.1 \text{ (eV)}$	(1)
	Unit given on paper so no ue and ignore reference to J	
	OR	
	Method 2:Use of Photoelectric Equation	
	Use of hf = Φ + E _{max} with any pair of values	(1)
	Divide by 1.6×10^{-19} to convert to eV	(1)
	$\Phi = 4.1 - 4.5$ (eV)	(1)
	Unit given on paper so no ue and ignore reference to J	
		(max 3)
2 (c)	Gradient of graph is Planck's constant/e	(1)
	(accept just Planck's constant)	
2(d)	Graph parallel to original graph	(1)
	cutting X axis with a value less than 10	(1)
	Total for question	7

Question	Answer	Mark
Number		
3 (a)	A statement which implies only certain energies are allowed e.g.	
	Allowed/possible energy of atom/electron (in an atom)	
	Discrete energy of an atom/electron	
	One of the energies of the atom/electron	1
	Energy an atom/electron can have	
(b)	Photon is a (discrete) package/packet/quantum of	
	(electromagnetic) energy/particle of light	1

(c)	(energy of) E_2 - (energy of)E $_1$	1
(d)	See $E = h c / \lambda$ OR use of $v = f\lambda$	1
	Substitution into $E = h c / \lambda$ OR use of $E = hf$	1
	$E = 3.14 \times 10^{-19} \text{ J}$ or 1.96 eV	1
	Example of answer	
	$E = (6.63 \times 10^{-34} \text{ Js} \times 3 \times 10^{-8}) \div 6.33 \times 10^{-7} \text{ m}$	
	$E = 3.14 \times 10^{-19} \text{ J}$	
	Total for question	6

Question Number	Answer	Mark
4	Addition of words (order essential) photon metal energy (allow mass, charge, momentum) (photo)electron work function (of the metal)	1 1 1 1 1
	Total for question	5

Question Number	Answer		Mark
5(a)	The (minimum) energy required to remove one/an electron from the surface of the metal	(1)	1
	(must refer to surface)	(-)	-
*5(b)	(QWC- Work must be clear and organised in a logical manner using technical wording where appropriate.)		
	 Increasing the intensity (of light) increases the number of electrons emitted(per sec) Or number of electrons emitted(per sec) depends on the intensity (of light) One photon releases one electron Intensity determines number of photons 	(1) (1) (1)	
	 OR Increasing the intensity (of light) does not increase the energy/speed of the electrons One photon releases one electron Energy of photon determined by/depends on frequency (not intensity) Or <i>E</i> = <i>hf</i> 	(1) (1) (1)	
	 OR Below a certain frequency / threshold frequency no electrons emitted Or above a certain wavelength no electrons emitted Energy of photons increases with / depends on frequency Or E = hf Each photon needs a minimum amount of energy / work function Or One photon releases one electron 	(1) (1) (1)	
	 OR Electron emission starts at once (even for low intensity) One photon releases one electron Wave theory would allow energy to build up 	(1) (1) (1)	
	 OR Increasing the frequency (of light) increases the energy/speed of the electrons Or Increasing the frequency (of light) increases the stopping potential Energy of photon determined by/depends on frequency Or <i>E</i> = <i>hf</i> One photon releases one electron Or Wave theory would allow energy to build up 	(1) (1) (1)	3
	(Max one mark for a 2 nd or 3 rd point if no correct observation given) Total for question		4

Question Number	Answer		Mark
6(a)	A statement which implies only certain energy levels are allowed e.g. Allowed/possible energy of atoms/electrons		
	Discrete energy of an atom/electron	(1)	1
6(b)	Identifies correct pairs of levels, 4 and 2 AND levels 2 and 1 Two arrows both showing correct direction [irrespective of identified levels]	(1) (1)	2
	Level 4 0		
	Level 32.8 Level 23.2		
	Level 16.4		
16(c)	3		
10(0)	Atom/electron gains energy and moves to a higher level Or atom/electron becomes excited	(1)	
	atom/electron has discrete energies Or atom/electron can only move between fixed levels Or only certain energy changes are possible	(1)	
	atom/electron falls to a lower level	(1)	
	By emitting energy in the form of photons Or reducing their energy by emitting photons	(1)	
	Photons have a specific energy/frequency Or reference to $E = hf$ Or photon energy $= E_2 - E_1$	(1)	3
6(d)	Use of $E = hf$ with any of the possible energy differences Identifies ΔE as $(\pm) 0.4 (\times 10^{-19} \text{ J})$ $f = 6.0 \times 10^{13} \text{ Hz}$	(1) (1) (1)	3
	Example of calculation Smallest energy difference is 0.4×10^{-19} J $f = 0.4 \times 10^{-19}$ J / 6.63×10^{-34} Js $f = 6.03 \times 10^{13}$ Hz		
6(e)	Divides an energy by 1.6×10^{-19} Energy = 4.0 (eV) (no ue)	(1) (1)	2
	Example of calculation Energy = $6.4 \times 10^{-19} \text{ J} / 1.6 \times 10^{-19} \text{ C}$ Energy = 4.0 eV		
	Total for question		11

Question Number	Answer		Mark
7	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate) MAX 6		
	Mention of energy levels (ignore electron shells)	(1)	
	Electrons in atoms can only occupy certain (discrete) energy levels	(1)	
	Ground state is the lowest energy/level electron(s)/atom can occupy	(1)	
	Energy is transferred in the collisions	(1)	
	Electrons/atoms move to higher level / become excited (when they gain energy)	(1)	
	These electrons return (later) to lower level/ground state	(1)	
	By emitting energy in the form of photons / reducing their energy by emitting photons	(1)	
	Photons have a specific energy or frequency or reference to $E = hf$ or $E = E_2 - E_1$	(1)	Max 6
	Total for question		6

Question	Answer		Mark
Number			
8 (a)	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate)		
	Reference to photons (may be descriptive, e.g. quantum of energy / light arrives in small packets / light particles)	(1)	
	Energy of photon greater than or equal to work function (of zinc) / $hf \ge \varphi$ Results in electron being emitted	(1) (1)	
	So (electroscope) loses charge / charge decreases (and leaf falls)	(1)	4
8(b)	Photon energy (for visible light) is less than the work function OR		
	frequency (of visible light) less than threshold frequency	(1)	1
8 (c)	Use of $c = f\lambda$ to find frequency (award if hc/λ used)	(1)	
	Use of $hf = \Phi + \frac{1}{2}mv^2$ to find KE	(1)	
	Use of ke equation with $m_{\rm e}$ $v = 8.20 \times 10^5 {\rm m s^{-1}}$	(1) (1)	4
	$\frac{\text{Example of calculation}}{\text{KE} = (6.63 \times 10^{-34} \times 3 \times 10^8)/200 \times 10^{-9} - 6.88 \times 10^{-19}$		
	$KE = 3.07 \times 10^{-19} \text{ J}$		
	$v = \sqrt{(2 \times 3.07 \times 10^{-19})/9.11 \times 10^{-31}}$		
	$v = 8.20 \times 10^5 \text{ m s}^{-1}$		
8 (d)	No change	(1)	
	Photon energy doesn't change (with distance)		
	Or photon energy depends (only) on frequency/wavelength	(1)	2
	Total for question		11